51说课稿 > 学科说课稿 > 数学说课稿 >

八年级上册的数学说课稿

时间: 小龙 数学说课稿

说课稿是教师口头表述具体课题的教学设想及其理论依据,是教师备课的文稿。如何才能写出优秀的八年级上册的数学说课稿?这里给大家分享八年级上册的数学说课稿供大家参考。

八年级上册的数学说课稿精选篇1

教学过程

I创设情境,提出问题

回顾上节课讲过的等边三角形的有关知识

1.等边三角形是轴对称图形,它有三条对称轴.

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

II例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

3.P56页练习1、2

III课堂小结:1.等腰三角形和性质;等腰三角形的条件

V布置作业:1.P58页习题12.3第ll题.

2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

八年级上册的数学说课稿精选篇2

教学目标:

知识目标:

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

能力目标:

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感目标:

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

教学重点:

掌握函数概念。

判断两个变量之间的关系是否可看作函数。

能把实际问题抽象概括为函数问题。

教学难点:

理解函数的概念。

能把实际问题抽象概括为函数问题。

教学过程设计:

一、创设问题情境,导入新课

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

『生』:摩天轮。

『师』:你们坐过吗?

……

『师』:当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?

『生』:应该有规律。因为人随轮一直做圆周运动。所以人的高度过一段时间就会重复依次,即转动一圈高度就重复一次。

『师』:分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。

大家从图上可以看出,每过6分钟摩天轮就转一圈。高度h完整地变化一次。而且从图中大致可以判断给定的时间所对应的高度h。下面根据图5-1进行填表:

t/分 0 1 2 3 4 5 …… h/米

t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

『师』:对于给定的时间t,相应的高度h确定吗?

『生』:确定。

『师』:在这个问题中,我们研究的对象有几个?分别是什么?

『生』:研究的对象有两个,是时间t和高度h。

『师』:生活中充满着许许多多变化的`量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的问题。

二、新课学习

做一做

(1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?

填写下表:

层数n 1 2 3 4 5 … 物体总数y 1 3 6 10 15 … 『师』:在这个问题中的变量有几个?分别师什么?

『生』:变量有两个,是层数与圆圈总数。

(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式,其中V表示刹车前汽车的速度(单位:千米/时)

①计算当fenbie为50,60,100时,相应的滑行距离S是多少?

②给定一个V值,你能求出相应的S值吗?

解:略

议一议

『师』:在上面我们研究了三个问题。下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?

『生』:相同点是:这三个问题中都研究了两个变量。

不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。

『师』:通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。

函数的概念

在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。

一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

三、随堂练习

书P152页 随堂练习1、2、3

四、本课小结

初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。

在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。

函数的三种表达式:

图象;(2)表格;(3)关系式。

五、探究活动

为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?

(答案:Y=1.8x-6或)

六、课后作业

习题6.1

八年级上册的数学说课稿精选篇3

12.3.2等边三角形(三)

教学过程

一、复习等腰三角形的判定与性质

二、新授:

1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等

2.等边三角形的判定:

三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;

在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.

3.由学生解答课本148页的例子;

4.补充:已知如图所示,在△ABC中,BD是AC边上的中线,DB⊥BC于B,

∠ABC=120o,求证:AB=2BC

分析由已知条件可得∠ABD=30o,如能构造有一个锐角是30o的直角三角形,斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了

八年级上册的数学说课稿精选篇4

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的'积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

八年级上册的数学说课稿精选篇5

一、教学内容:

本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时——完全平方公式。

二、教材分析:

完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。

本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。使学生了解到完全平方公式是有力的数学工具。

重点:掌握完全平方公式,会运用公式进行简单的计算。

难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。

三、教学目标

(1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。

(2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。

(3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的.能力,学会与他人合作交流,体验解决问题的多样性。

(4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。

四、学情分析与教法学法

学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。另外,14岁的中学生充满了好奇心,有较强的求知欲、创造欲、表现欲,所以只有能调动学生的学习热情,本节内容才较易掌握。但八年级学生的探究能力有差异,逻辑推理能力也有待于提高,而且易粗心马虎,这都是本节课要注意的问题。

学法:以自主探究为主要学习方式,使学生在独立思考、归纳总结、合作交流

总结反思中获得数学知识与技能。

教法:以启发引导式为主要教学方式,在引导探究、归纳总结、典例精析、合作交流的教学过程中,教师做好组织者和引导者,让学生在老师的指导下处于主动探究的学习状态。

五、教学过程

(略)

六、教学评价

在教学中,教师在精心设置教学环节中,做到以学生为主体,做好组织者和引导者,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。教师通过情境引入、提供问题引导学生从已有的知识为出发点,自主探究,发现问题,深入思考。学生解决问题要以独立思考为主,当遇到困难时学会求助交流,教师也要给学生思考交流的时间,让学生经历得出结论的过程,培养发现问题解决问题的能力。

在整个学习过程中,通过对学生参与自主探究的程度、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生的想法或结论给予鼓励评价。

八年级上册的数学说课稿精选篇6

教学目标

1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.

教学重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.

教学难点:等腰三角形三线合一的性质的理解及其应用.

教学过程

Ⅰ.提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是.

问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.

Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形.

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.

思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴.

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

由此可以得到等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成“等边对等角”).

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数.

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形内角和为180°,就可求出△ABC的三个内角.

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

解:因为AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等边对等角).

设∠A=x,则∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

[师]下面我们通过练习来巩固这节课所学的知识.

Ⅲ.随堂练习:1.课本P51练习1、2、3.2.阅读课本P

49~P51,然后小结.

Ⅳ.课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.

Ⅴ.作业:课本P56习题12.3第1、2、3、4题.

板书设计

12.3.1.1等腰三角形

一、设计方案作出一个等腰三角形

二、等腰三角形性质:1.等边对等角2.三线合一

八年级上册的数学说课稿精选篇7

一、教材分析

1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。

2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:

(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析

1、知识目标:掌握最短路径概念、能够求解最短路径。

2、能力目标:

(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。

(2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。

3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。

三、教法分析

课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。

四、学法指导

1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析

(一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。

教学方法及注意事项:

(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。

(2)提示学生“温故而知新”,养成良好的学习习惯。

(二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:

(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。

(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的`存在,所以这里的例子只需要概述,能够说明问题即可。

(三)讲授新课(25~30分钟)

1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。

(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:

①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。

②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。

③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。

④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。

教学方法及注意事项:

①启发式教学,如何实现按路径长度递增产生最短路径?

②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。

(四)课堂小结(3~5分钟)

1、明确本节课重点

2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?

(五)布置作业

1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。

六、教学特色

以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。

5814