数学教学设计教研
在说课稿的基础上进行课堂教学实践后,可以与其他教师进行交流和分享,讨论教学方法的优缺点,相互学习借鉴。下面小编给大家提供一些数学教学设计教研参考,希望对大家写数学教学设计教研有帮助。
数学教学设计教研(篇1)
活动目标:
1、创设玩具城情境,激发幼儿对数学活动的兴趣,体验和同伴共同学习的愉快情绪。
2、通过看看、说说、粘粘等形式感知4以内数量,发展思维能力。
3、能有序的进行操作,提高动手操作能力的发展。
4、初步培养观察、比较和反应能力。
5、引发幼儿学习的兴趣。
活动准备:
玩具车幼儿人手一辆、幼儿操作材料每人一份、教师示范教具一套
活动过程:
一、激发去玩具城的兴趣
1、我们小朋友喜不喜欢玩玩具?你喜欢玩什么玩具?(幼儿自由讲述)
2、随律动《开火车》进入活动室
二、玩玩具,初步感知4以内的数量
1、幼儿第一次玩玩具,感知轮子能滚动的特性,初步学习点数4以内的数量小结:原来轮子都会滚动,而且都不一样。
2、幼儿互相交换第二次玩玩具,感知不同数量的轮子,巩固对数量的认识
3、送玩具回家,幼儿按点送物
三、帮玩具宝宝数轮子
1、玩具宝宝要去参加装轮子大赛,可是他们还不知道自己该装几个轮子,怎么办呢?
2、出示范例,引导幼儿思考这是什么车?它应该装几个轮子?(根据幼儿讲述示范粘贴一种,其他的请幼儿思考并轻轻告诉老师)
3、幼儿操作,教师巡回指导,引导幼儿相互进行验证,适当启发个别能力较弱的幼儿
4、集体验证引导幼儿说一说你帮什么车装了几个轮子?是不是每一个玩具宝宝都会数自己的轮子了?
四、我们也来变一变
1、我们小朋友想不想跟着玩具宝宝一起去参加比赛?
2、请你们动一动小脑筋,变一变,你想变成什么车去?
3、幼儿随音乐出活动室
五、延伸
1、在数学区投放相应材料供幼儿巩固
2、在日常活动中引导幼儿自由的变成轮子数量不同的玩具车。
数学教学设计教研(篇2)
一、素质教育目标
(一)知识教学点
使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.
(二)能力训练点
逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.
(三)德育渗透点
培养学生独立思考、勇于创新的精神.
二、教学重点、难点
1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.
2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.
三、教学步骤
(一)明确目标
1.复习提问
(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.
(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).
(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.
2.导入新课
根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.
(二)、整体感知
关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.
(三)重点、难点的学习和目标完成过程
1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.
2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.
3.教师板书:
任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.
sinA=cos(90°-A),cosA=sin(90°-A).
4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.
已知∠A和∠B都是锐角,
(1)把cos(90°-A)写成∠A的正弦.
(2)把sin(90°-A)写成∠A的余弦.
这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.
(2)已知sin35°=0.5736,求cos55°;
(3)已知cos47°6′=0.6807,求sin42°54′.
(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,将题目变形:
(2)已知sin35°=0.5736,则cos______=0.5736.
(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.
为了配合例3的教学,教材中配备了练习题2.
(2)已知sin67°18′=0.9225,求cos22°42′;
(3)已知cos4°24′=0.9971,求sin85°36′.
学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.
教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.
(四)小结与扩展
1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.
2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.
四、布置作业
数学教学设计教研(篇3)
活动目标
1、了解祖国各地的特产,激发幼儿爱祖国的情感。
2、进一步积累5以内的算式与图片的匹配,学习有计划的花费和购物。
活动准备
1、ppt;
2、幼儿操作卡。
活动过程
一、引发情感
过渡语:国庆节假期结束了,我们去了很多地方旅游,也带回来了很多地方的特产,我们一起来开一间特产商店吧。
关键提问:土特产商店里有些什么物品?
关键提问:这些物品你知道是什么地方的特产吗?你见过吗?吃过吗?知道是什么味道的吗?
小结:每个地方都有属于自己的特色物品,所以我们去旅游的时候可以带一些特产送给朋友。
二、观察特产商店的价目表
过渡语:特产商店今天要开张了,我们一起看看里面的物品贵不贵。
关键提问:你想买几样东西?这样东西多少钱?
关键提问:如果你有5元钱,可以买两样东西,你打算买什么?
关键提问:如果你有5元钱,买哪些东西,可以买的种类或者数量多。
小结:我们每次买东西都要有计划,可以是5元钱,也可以是6元钱或者更多。
三、幼儿尝试图片和算式匹配
过渡语:现在我们要去特产店选东西了。
关键提问:什么样的算式可以和相应的图片的匹配?为什么?
小结:只要把5元钱花完,可以买两样东西,可以买三样东西,或者更多,也可以同样的东西买多份。
四、活动延伸
请幼儿在角色游戏时尝试购物,感受合理分配自己的钱。
数学教学设计教研(篇4)
活动目标:
1、能按照图形的形状特征进行活动,巩固对形状的认识。
2、能说出自己的分类理由。
3、让幼儿懂得简单的数学道理。
4、有兴趣参加数学活动。
活动准备:
经验准备:幼儿已认识过三角形、圆形、正方形、长方形、梯形、椭圆形等图形。
物质准备:每人一个分类盒
材料配套:幼儿活动操作材料《科学·按图形的特征分类》《科学·图形组合》。
活动过程:
1、出示“奇妙的口袋”、复习对平面图形的认识。
师:这是一个漆面的口袋、里面藏着许多东西,请大家猜猜藏的是什么。教师一遍念“奇妙口袋东西多,让我先来摸一摸”,边请个别幼儿分别摸出正方形、角形、圆形、长方形、梯形、椭圆形的图形让大家辨认并说出名称。
2、引导幼儿操作,学习给图形分类。
师:请小朋友拿出分类盒,把一样形状的图形放在一起。
幼儿操作,教师观察指导。
操作完毕后,请幼儿将所以图形按形状分别放在相应的篮子里,并互相检查分类是否错误。
3、完成操作材料
请幼儿观察操作材料《按图形的特征分类》《图形组合》,看看上面的图案分别由哪些图形组成,数一数每种图形的数量有几,并分类作记录。
数学教学设计教研(篇5)
(一)创设情境 导入新课
不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?
如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?
设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。
(二)合作交流 探究新知
(活动一)探究角平分仪的原理。具体过程如下:
播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其 中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.
分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示: 教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:
已知:∠AO B.
求作:∠AOB的平分线.
作法:
(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.
(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.
(3)作射线OC,射线OC即为所求.
设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。
议一议:
1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?
2.第二步中所作的两弧交点一定在∠AOB的内部吗?
设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。
学生讨论结果总结:
1.去掉“大于 MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.
2.若分别以M、N为圆心,大于 MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.
3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.
4.这种作法的可行性可以通过全等三角形来证明.
(活动三)探究角平分线的性质
思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?
这样设计的目的是加深对全等的认识。
数学教学设计教研(篇6)
活动目标:
1、通过多媒体课件,激发幼儿对排序活动的兴趣。
2、培养幼儿初步的观察与比较能力,提高幼儿的判断推理能力,发展幼儿的逆向思维。
3、引导幼儿学习按物体的形状有规律地排列。
4、引导幼儿积极与材料互动,体验数学活动的乐趣。
5、发展幼儿逻辑思维能力。
活动准备:
课件、教师及幼儿操作材料
活动过程:
1、操作
课件,复习按颜色排序。
指#教案# 导语:我收到了图形王国发来的礼物我们一起来看看吧。
2、看图,引导幼儿探索形状排序的规律。
指#教案# 导语:在图片中除了有红、蓝颜色之外,你们还发现了什么?它们是怎么排队的?
(三角形、圆形等)
3、玩“我说你做”的游戏,启发幼儿自己操作。
指#教案# 导语:刚才的问题,小朋友都答对,我们再接着玩游戏吧!请你们根据我给的图形排队,并说说你是怎样排的?
4、教师小结,活动结束。
今天你们通过游戏,学会了按物体的形状有规律地给图形朋友排对,我们今天又学会了一种本领,我们要谢谢图形朋友们,跟图形朋友再见!
数学教学设计教研(篇7)
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.
(四)总结与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.
五、板书设计
数学教学设计教研(篇8)
活动目标:
1、学习用记录统计的方法比较物品的多少,感知数学在生活中的作用。
2、探索运用自己喜欢的方式进行记录,从中比较出最快速最清楚的记录方法。
3、尝试商讨合作式的学习,学会肯定自己和倾听他人的意见。
4、让孩子们能正确判断数量。
5、体会数学的生活化,体验数学游戏的乐趣。
活动准备:
1、录音机、磁带;小猫、小狗、小兔木偶;金牌一枚;画有小猫、小狗、小兔的记录纸和空白表格若干,记号笔人手一支
2、大格子图及皮球、沙包、绳子
活动过程:
(一)创设情景,激起疑问
放录音讲述投篮比赛情况,请幼儿仔细倾听。
你能说出谁投进的球最多吗?
(二)商讨方法,鼓励探索
1、幼儿自由讨论比较谁是冠军的方法。
2、出示表格,引导幼儿思考并讲述用表格记录的方法。
3、幼儿再次倾听比赛过程,并尝试用自己喜欢的方式进行记录。
4、相互交流记录结果和记录方法,并展示几种有代表性质的记录方法。
5、分析几种不同的记录方法,讨论比较出最方便最清楚的方法。
6、请幼儿最为简单清楚的记录方法再次记录投篮情况。
7、放录音,请个别孩子为冠军获得者颁发金牌。
(三)合作调查、应用实践
1、联系生活,引出问题:
(1)(出示绳子、沙包、皮球)老师给你们准备了绳子、沙包、皮球,你们觉得比哪一种好呢?(幼儿自由发言)
(2)这么多人的意见都不一样,老师怎样知道哪种意见的人最多呢?我们用什么办法能比较出来?
2、幼儿商讨并实施
引导幼儿分组合作展开调查和记录,并将各桌的记录结果统一到老师预设的总表上。
(四)引导幼儿一起观察大表格的统计结果,并带领幼儿到户外去参加该项目的比赛。