高三数学复习教案
说课稿可以帮助教师更好地了解学生的学习情况和需求,从而调整教学策略,提高教学质量。下面是一些高三数学复习教案免费阅读下载,希望对大家写高三数学复习教案有用。
高三数学复习教案篇1
教学准备
教学目标
数列求和的综合应用
教学重难点
数列求和的综合应用
教学过程
典例分析
3.数列{an}的前n项和Sn=n2-7n-8,
(1)求{an}的通项公式
(2)求{|an|}的前n项和Tn
4.等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=
6.数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求{an}的通项公式
(2)令bn=anxn,求数列{bn}前n项和公式
7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数
8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有值,并求出它的值
.已知数列{an},an∈N_,Sn=(an+2)2
(1)求证{an}是等差数列
(2)若bn=an-30,求数列{bn}前n项的最小值
0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N_)
(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列
(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.
11.购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
12.某商品在最近100天内的价格f(t)与时间t的
函数关系式是f(t)=
销售量g(t)与时间t的函数关系是
g(t)=-t/3+109/3(0≤t≤100)
求这种商品的日销售额的值
注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的值,应分别求出函数在各段中的值,通过比较,确定值。
高三数学复习教案篇2
(一)引入:
(1)情景1
王老汉的疑惑:秋收过后,村中拥入了不少生意人,收购大豆与红薯,精明的王老汉上了心,一打听,顿时喜上眉梢.村中大豆的收购价是5元/千克,红薯的收购价是
2元/千克,而送到县城每千克大豆可获利1.2元,每千克红薯可获利0.6元,王老汉决定明天就带上家中仅有的1000元现金,踏着可载重350千克的三轮车开始自己的发财大计,可明天应该收购多少大豆与红薯呢?王老汉决定与家人合计.回家一讨论,问题来了.孙女说:“收购大豆每千克获利多故应收购大豆”,孙子说:“收购红薯每元成本获利多故应收购红薯”,王老汉一听,好像都对,可谁说得更有理呢?精明的王老汉心中更糊涂了。
【问题情景使学生感受到数学是来自现实生活的,让学生体会从实际问题中抽象出数学问题的过程;通过情景我们不仅能从中引出本堂课的内容“二元一次不等式(组)的概念,及其所表示的平面区域”,也为后面的内容“简单的线性规划问题”埋下了伏笔.】
(2)问题与探究
师:同学们,你们能用具体的数字体现出王老汉的两个孙子的收购方案吗?
生,讨论并很快给出答案.(师,记录数据)
师:请你们各自为王老汉设计一种收购方案.
生,独立思考,并写出自己的方案.(师,查看学生各人的设计方案并有针对性的请几个同学说出自己的方案并记录,注意:要特意选出2个不合理的方案)
师:这些同学的方案都是对的吗?
生,讨论并找出其中不合理的方案.
师:为什么这些方案就不行呢?
生,讨论后并回答
师:满足什么条件的方案才是合理的呢?
生,讨论思考.(师,引导学生设出未知量,列出起约束作用的不等式组)
师,让几个学生上黑板列出不等式组,并对之分析指正
(教师用多媒体展示所列不等式组,并介绍二元一次不等式,二元一次不等式组的概念.)
师:同学们还记得什么是方程的解吗?你能说出二元一次方程二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的一组解吗?
生,讨论并回答(教师记录几组,并引导学生表示成有序实数对形式.)
师:同学们能说出什么是不等式(组)的解吗?你能说出二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的一组解吗?
生,讨论并回答(教师对于学生的回答指正并有选择性的记录几组比较简单的数据,对于这些数据要事先设计好并在课件的坐标系中标出备用)
(教师对引例中给出的不等式组介绍,并指出上面的正确的设计方案都是不等式组的解.进而介绍二元一次不等式(组)解与解集的概念)
师:我们知道每一组有序实数对都对应于平面直角坐标系上的一个点,你能把上面记录的不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解在平面直角坐标系上标记出来吗?
生,讨论并在下面作图(师巡视检查并对个别同学的错误进行指正)
师,利用多媒体课件展示平面直角坐标系及不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解所对应的一些点,让学生观察并思考讨论:不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解在平面直角坐标系中的位置有什么特点?(由于点太少,我们的学生可能得不出结论)
师,引导学生在同一平面直角坐标系中画出方程二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解所对应的图形(一条直线,指导学生用与坐标轴的两个交点作出直线),再提出问题:二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解为坐标的点在平面直角坐标系中的位置有什么特点?
生,提出猜想:直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计分得的左下半平面.
【教师通过几个简单的问题,让学生产生了利用平面区域表示二元一次不等式的想法,而后再让学生大胆的猜想,细心的论证,让他们从中让体会到对新知识进行科学探索的全过程.】
师:这个结论正确吗?你能说出理由来吗?
生,分组讨论,并利用自己的数学知识去探究.(由于没有给出一个固定的方向,所以各人用的方法不一,有的可能用特殊点再去检验,有的可能会试着用坐标轴的正方向去说明,也有的可能会用直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计下方的点与对应直线上的点对照比较的方法进行说明)
师,在巡视的基础上请运用不同方法的同学阐述自己的理由,并对于正确的作法给予表扬,然后用多媒体展示出利用与直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计横坐标相同而纵坐标不同的点对应分析的方法进行证明.
师:直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的右上半平面应怎么表示?
生:表示为二元一次不等式(组)与简单的线性规划问题的模块单元教学设计,(很快回答)
师:从中你能得出什么结论?
生,讨论并得到一般性结论(教师总结纠正)
(教师总结并用多媒体展示,二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的某侧所有点组成的平面区域,因不包含边界故直线画成虚线;二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示的平面区域因包含边界故直线画成实线.)
师:点O(0,0)是不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计一个解吗?据此你能说出不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计对应的平面区域相对与直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的位置吗?
生,作图分析,讨论并回答(师,对学生的回答进行分析)
师:结合上面问题请同学们归纳出作不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计对应的平面区域的过程.
生,讨论并回答(师,对于学生的答案给以分析,并肯定其中正确的结论)
师:你们能说出作二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计对应的平面区域的过程吗?
生,讨论并回答(教师总结并用多媒体展示:直线定界,特殊点定域)
师:若点P(3,-1),点Q(2,4)在直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的异侧,你能用数学语言表示吗?
生,讨论,思考(教师巡视,并观察学生的解答过程,最后引导学生得出:一个是不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解,一个是不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解)
师:你能在这个条件下求出二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的范围吗?
生.讨论分析,最后得到不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计并求解.
师:若把上面问题改为点在同侧呢?请同学们课后完成.
【在教师的帮助下学生通过自己的分析得出了正确的结论,让他们从中体会到了获取新知后的成就感,从而增加了对数学的学习兴趣.同时也让他们体会人们在认识新生事物时从特殊到一般,再从一般到特殊的认知过程.】
(二)实例展示:
例1、画出不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示的平面区域.
例2、用平面区域表示不等式组二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解集.
【通过利用多媒体对实例的展示让学生体会到画出不等式表示的平面区域的基本流程:直线定界,特殊点定域,而不等式(组)表示的平面区域是各个不等式表示的平面区域的公共部分.同时对具体作图中的细节问题进行点拔.】
(三)练习:
学生练习P86第1-3题.
【及时巩固所学,进一步体会画出不等式(组)表示的平面区域的基本流程】
(四)课后延伸:
师:我们在今天主要解决了在给出不等式(组)的情况下如何用平面区域来表示出来的问题.如果反过来给出了平面区域你能写出相关的不等式(组)吗?例如你能写出A(2,4),B(2,0),C(1,2)三点构成的三角形内部区域对应的不等式组吗?
你能写出不等式形如二元一次不等式(组)与简单的线性规划问题的模块单元教学设计这种不等式表示的平面区域?
(五)小结与作业:
二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计某侧所有点组成的平面区域,画出不等式(组)表示的平面区域的基本流程:直线定界,特殊点定域(一般找原点)
作业:第93页A组习题1、2,
补充作业:若线段PQ的两个端点坐标为P(3,-1),Q(2,4),且直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计与线段PQ
高三数学复习教案篇3
教学目标:
结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学重点:
掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学过程
一、复习
二、引入新课
1.假言推理
假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。
(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。
(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。
2.三段论
三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。
3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。
(1)对称性关系推理是根据关系的对称性进行的推理。
(2)反对称性关系推理是根据关系的反对称性进行的推理。
(3)传递性关系推理是根据关系的传递性进行的推理。
(4)反传递性关系推理是根据关系的反传递性进行的推理。
4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。
完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。
高三数学复习教案篇4
一.课标要求:
(1)空间向量及其运算
① 经历向量及其运算由平面向空间推广的过程;
② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;
③ 掌握空间向量的线性运算及其坐标表示;
④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
(2)空间向量的应用
① 理解直线的方向向量与平面的法向量;
② 能用向量语言表述线线、线面、面面的垂直、平行关系;
③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);
④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。
二.命题走向
本讲内容主要涉及空间向量的坐标及运算、空间向量的应用。本讲是立体几何的核心内容,高考对本讲的考察形式为:以客观题形式考察空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。
预测20_年高考对本讲内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。
三.要点精讲
1.空间向量的概念
向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。
相等向量:长度相等且方向相同的向量叫做相等向量。
表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。
说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。
2.向量运算和运算率
加法交换率:
加法结合率:
数乘分配率:
说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。
3.平行向量(共线向量):
如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。 平行于 记作 ∥ 。
注意:当我们说 、 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说 、 平行时,也具有同样的意义。
共线向量定理:对空间任意两个向量 ( )、 , ∥ 的充要条件是存在实数 使 =
注:⑴上述定理包含两个方面:①性质定理:若 ∥ ( 0),则有 = ,其中 是唯一确定的实数。②判断定理:若存在唯一实数 ,使 = ( 0),则有 ∥ (若用此结论判断 、 所在直线平行,还需 (或 )上有一点不在 (或 )上)。
⑵对于确定的 和 , = 表示空间与 平行或共线,长度为 | |,当 0时与 同向,当 0时与 反向的所有向量。
⑶若直线l∥ , ,P为l上任一点,O为空间任一点,下面根据上述定理来推导 的表达式。
推论:如果 l为经过已知点A且平行于已知非零向量 的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足等式
①其中向量 叫做直线l的方向向量。
在l上取 ,则①式可化为 ②
当 时,点P是线段AB的中点,则 ③
①或②叫做空间直线的向量参数表示式,③是线段AB的中点公式。
注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基础,也是常用的直线参数方程的表示形式;⑵推论的用途:解决三点共线问题。⑶结合三角形法则记忆方程。
4.向量与平面平行:
如果表示向量 的有向线段所在直线与平面 平行或 在 平面内,我们就说向量 平行于平面 ,记作 ∥ 。注意:向量 ∥ 与直线a∥ 的联系与区别。
共面向量:我们把平行于同一平面的向量叫做共面向量。
共面向量定理 如果两个向量 、 不共线,则向量 与向量 、 共面的充要条件是存在实数对x、y,使 ①
注:与共线向量定理一样,此定理包含性质和判定两个方面。
推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x、y,使
④或对空间任一定点O,有 ⑤
在平面MAB内,点P对应的实数对(x, y)是唯一的。①式叫做平面MAB的向量表示式。
又∵ 代入⑤,整理得
⑥由于对于空间任意一点P,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P就在平面MAB内;对于平面MAB内的任意一点P,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量 、 (或不共线三点M、A、B)确定的空间平面的向量参数方程,也是M、A、B、P四点共面的充要条件。
5.空间向量基本定理:如果三个向量 、 、 不共面,那么对空间任一向量,存在一个唯一的有序实数组x, y, z, 使
说明:⑴由上述定理知,如果三个向量 、 、 不共面,那么所有空间向量所组成的集合就是 ,这个集合可看作由向量 、 、 生成的,所以我们把{ , , }叫做空间的一个基底, , , 都叫做基向量;⑵空间任意三个不共面向量都可以作为空间向量的一个基底;⑶一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同的概念;⑷由于 可视为与任意非零向量共线。与任意两个非零向量共面,所以,三个向量不共面就隐含着它们都不是 。
推论:设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的有序实数组 ,使
6.数量积
(1)夹角:已知两个非零向量 、 ,在空间任取一点O,作 , ,则角AOB叫做向量 与 的夹角,记作
说明:⑴规定0 ,因而 = ;
⑵如果 = ,则称 与 互相垂直,记作
⑶在表示两个向量的夹角时,要使有向线段的起点重合,注意图(3)、(4)中的两个向量的夹角不同,
图(3)中AOB= ,
图(4)中AOB= ,
从而有 = = .
(2)向量的模:表示向量的有向线段的长度叫做向量的长度或模。
(3)向量的数量积: 叫做向量 、 的数量积,记作 。
即 = ,
向量 :
(4)性质与运算率
⑴ 。 ⑴
⑵ =0 ⑵ =
⑶ ⑶
四.典例解析
题型1:空间向量的概念及性质
例1.有以下命题:①如果向量 与任何向量不能构成空间向量的一组基底,那么 的关系是不共线;② 为空间四点,且向量 不构成空间的一个基底,那么点 一定共面;③已知向量 是空间的一个基底,则向量 ,也是空间的一个基底。其中正确的命题是( )
①② ①③ ②③ ①②③
解析:对于①如果向量 与任何向量不能构成空间向量的一组基底,那么 的关系一定共线所以①错误。②③正确。
例2.下列命题正确的是( )
若 与 共线, 与 共线,则 与 共线;
向量 共面就是它们所在的直线共面;
零向量没有确定的方向;
若 ,则存在唯一的实数 使得 ;
解析:A中向量 为零向量时要注意,B中向量的共线、共面与直线的共线、共面不一样,D中需保证 不为零向量。
题型2:空间向量的基本运算
例3.如图:在平行六面体 中, 为 与 的交点。若 , , ,则下列向量中与 相等的向量是( )
例4.已知: 且 不共面.若 ∥ ,求 的值.
题型3:空间向量的坐标
例5.(1)已知两个非零向量 =(a1,a2,a3), =(b1,b2,b3),它们平行的充要条件是()
A. :| |= :| |B.a1b1=a2b2=a3b3
C.a1b1+a2b2+a3b3=0D.存在非零实数k,使 =k
(2)已知向量 =(2,4,x), =(2,y,2),若| |=6, ,则x+y的值是()
A. -3或1 B.3或-1 C. -3 D.1
(3)下列各组向量共面的是()
A. =(1,2,3), =(3,0,2), =(4,2,5)
B. =(1,0,0), =(0,1,0), =(0,0,1)
C. =(1,1,0), =(1,0,1), =(0,1,1)
D. =(1,1,1), =(1,1,0), =(1,0,1)
解析:(1)D;点拨:由共线向量定线易知;
(2)A 点拨:由题知 或 ;
例6.已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4)。设 = , = ,(1)求 和 的夹角 ;(2)若向量k + 与k -2 互相垂直,求k的值.
思维入门指导:本题考查向量夹角公式以及垂直条件的应用,套用公式即可得到所要求的结果.
解:∵A(-2,0,2),B(-1,1,2),C(-3,0,4), = , = ,
=(1,1,0), =(-1,0,2).
(1)cos = = - ,
和 的夹角为- 。
(2)∵k + =k(1,1,0)+(-1,0,2)=(k-1,k,2),
k -2 =(k+2,k,-4),且(k + )(k -2 ),
(k-1,k,2)(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0。
则k=- 或k=2。
点拨:第(2)问在解答时也可以按运算律做。( + )(k -2 )=k2 2-k -2 2=2k2+k-10=0,解得k=- ,或k=2。
题型4:数量积
例7.设 、 、c是任意的非零平面向量,且相互不共线,则
①( ) -( ) = ②| |-| || - | ③( ) -( ) 不与 垂直
④(3 +2 )(3 -2 )=9| |2-4| |2中,是真命题的有( )
A.①② B.②③ C.③④ D.②④
答案:D
解析:①平面向量的数量积不满足结合律.故①假;
②由向量的减法运算可知| |、| |、| - |恰为一个三角形的三条边长,由两边之差小于第三边,故②真;
③因为[( ) -( ) ] =( ) -( ) =0,所以垂直.故③假;
例8.(1)已知向量 和 的夹角为120,且| |=2,| |=5,则(2 - ) =_____.
(2)设空间两个不同的单位向量 =(x1,y1,0), =(x2,y2,0)与向量 =(1,1,1)的夹角都等于 。(1)求x1+y1和x1y1的值;(2)求 , 的大小(其中0 , 。
解析:(1)答案:13;解析:∵(2 - ) =2 2- =2| |2-| || |cos120=24-25(- )=13。
(2)解:(1)∵| |=| |=1,x +y =1,x =y =1.
又∵ 与 的夹角为 , =| || |cos = = .
又∵ =x1+y1,x1+y1= 。
另外x +y =(x1+y1)2-2x1y1=1,2x1y1=( )2-1= .x1y1= 。
(2)cos , = =x1x2+y1y2,由(1)知,x1+y1= ,x1y1= .x1,y1是方程x2- x+ =0的解.
或 同理可得 或
∵ , 或
cos , + = + = .
∵0 , , , = 。
评述:本题考查向量数量积的运算法则。
题型5:空间向量的应用
例9.(1)已知a、b、c为正数,且a+b+c=1,求证: + + 4 。
(2)已知F1=i+2j+3k,F2=-2i+3j-k,F3=3i-4j+5k,若F1,F2,F3共同作用于同一物体上,使物体从点M1(1,-2,1)移到点M2(3,1,2),求物体合力做的功。
解析:(1)设 =( , , ), =(1,1,1),
则| |=4,| |= .
∵ | || |,
= + + | || |=4 .
当 = = 时,即a=b=c= 时,取=号。
例10.如图,直三棱柱 中, 求证:
证明:
五.思维总结
本讲内容主要有空间直角坐标系,空间向量的坐标表示,空间向量的坐标运算,平行向量,垂直向量坐标之间的关系以及中点公式.空间直角坐标系是选取空间任意一点O和一个单位正交基底{i,j,k}建立坐标系,对于O点的选取要既有作图的直观性,而且使各点的坐标,直线的坐标表示简化,要充分利用空间图形中已有的直线的关系和性质;空间向量的坐标运算同平面向量类似,具有类似的运算法则.一个向量在不同空间的表达方式不一样,实质没有改变.因而运算的方法和运算规律结论没变。如向量的数量积ab=|a||b|cos在二维、三维都是这样定义的,不同点仅是向量在不同空间具有不同表达形式.空间两向量平行时同平面两向量平行时表达式不一样,但实质是一致的,即对应坐标成比例,且比值为 ,对于中点公式要熟记。
对本讲内容的考查主要分以下三类:
1.以选择、填空题型考查本章的基本概念和性质
此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题。
2.向量在空间中的应用
在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质。
在复习过程中,抓住源于课本,高于课本的指导方针。本讲考题大多数是课本的变式题,即源于课本。因此,掌握双基、精通课本是本章关键。
高三数学复习教案篇5
教学目标
知识目标等差数列定义等差数列通项公式
能力目标掌握等差数列定义等差数列通项公式
情感目标培养学生的观察、推理、归纳能力
教学重难点
教学重点等差数列的概念的理解与掌握
等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用
教学过程
由_《红高粱》主题曲“酒神曲”引入等差数列定义
问题:多媒体演示,观察————发现?
一、等差数列定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。
例1:观察下面数列是否是等差数列:…。
二、等差数列通项公式:
已知等差数列{an}的首项是a1,公差是d。
则由定义可得:
a2—a1=d
a3—a2=d
a4—a3=d
……
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。
分析:知道a1,d,求an。代入通项公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差数列10,8,6,4…的第20项。
分析:根据a1=10,d=—2,先求出通项公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。
分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n—1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。
解:由题意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
练习
1、判断下列数列是否为等差数列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
2、等差数列{an}的前三项依次为a—6,—3a—5,—10a—1,则a等于()
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在数列{an}中a1=1,an=an+1+4,则a10=。
提示:d=an+1—an=—4
教师继续提出问题
已知数列{an}前n项和为……
作业
P116习题3。21,2