51说课稿 > 学科说课稿 > 数学说课稿 >

中职数学教学目标设计

时间: 小龙 数学说课稿

说课稿是为了提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力。中职数学教学目标设计应该写成什么样的?快来看看中职数学教学目标设计,本文为你提供中职数学教学目标设计写作技巧和示例!

中职数学教学目标设计(精选篇1)

本学期我担任高一全年级的数学教学工作,高一全年级学生共有200多人,就读我校的学生初中基础较差,全年级的学生整体水平不高;大多数学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材分析

1、从中职数学教学的特点出发,加强教材的基础性、实用性和灵活性。新教材适用于不同地区、不同类型的职业学校,为不同专业,不同水平,不同发展需求的学生提供适宜的平台。根据新大纲的要求,教材的编写更加突出知识的基础性、应用性以及学生获取知识手段的多样性,其表现为知识低难度,教材叙述、例题的选择尽量贴近职校生的学习与生活实际,体现时代的特色。尤其在职业模块,更加强调“实用为主、够用为度”的编写理念。

2、着眼于中职数学教学的实际,通过“低起点、巧衔接”的编写手法,力求实现学生乐于学,教师便于教的目标。教材编写遵循学生认知发展的规律,降低知识的起点,由已知到未知,由浅入深,由具体到抽象。

三、学情分析

我校的生源对象一般都是中考落榜生。他们在初中阶段就承受着巨大的升学压力,在经过苦读之后,仍然无望升入高中继续学习,由于不能实现预期的学习目标,学习上的挫折使他们失去了学习的信心和进取心。为了求职的需要,有部分学生自愿选择进入中职学校学习,但有相当一部分学生是迫于外界某种压力,如父母的强烈要求等,而不得不进入职业学校学习的;还有一些学生初中都没有念完,是家长为避免其子女在社会上出乱子,把孩子送到学校,学习知识则放在次要的位置。这些“学困生”容易沉迷于开设在学校周围的录像厅、电子游戏室、网吧等娱乐场所,彻夜不归的上网等逃避学习的现象时有发生,以致丧失了求职的目标和毅力;于是作业不写不作、上课迟到、说话、看小说、玩手机、睡觉等现象几乎是比比皆是。另外,由于学生入学时,初中阶段的文化基础差,年龄小,对专业知识生疏,因此,接受能力、分析能力、思维能力偏低,再加上中等职业教育的课程门数不断增多,教学方法与中学有所不同,教学进度也比初中快,所以,不少学生难以适应中职学校的教学方法和教学进度,逐渐产生了厌学情绪,自暴自弃。因此,学生中存在的潜在被动学习因素偏多,综合素质普遍不高,学习能力差异较大等,给学校的教育管理和组织教学带来了很大的困难。

四、教学措施

1、加强自我学习,特别是中职数学大纲的学习,吃透大纲,准确把握教学要求,提高教学效率,不做无用功;

2、加强听课备课,集思广益,讨论优化教学方案;平行班级统一进度,统一要求,统一作业,统一考试;

3、认真贯彻教学六认真的要求,精心组织教学,保护学生学习数学的积极性,重视数学学习能力培养;

4、加强衔接教学,适量打破模块式教学,使学生得到和谐的发展。

5、采用理论与实践的教学模式。要紧紧围绕提高学生的各项能力来确定本专业的课程体系和知识结构,明确设置课程在能力培养中必须的知识点,根据不同专业工种和不同层次需求选择编排,确定教学要求。根据用人单位的需求确定专业培养目标,选择相应的理论知识组织教学,同时配合相关的技能训练,特别注重培养学生的知识应用能力,让他们能够用理论指导实践,通过实践验证理论。

6、降低理论难度,进行概括总结。适时调整课程设置和教学内容,奔着够学、够用的原则,不求学的过深,而要强调学会、会用、够用,通过三年的教育使学生能够熟悉或掌握一门实用技术或技能,以适应求职的需求,使学生在激烈的市场竞争中有立足之地。比如说,就适当减少周学时,留出足够时间加强职业能训练。同时,对知识的概括总结也是很重要的。概括总结是课堂教学中学生构建知识结构、梳理知识脉络的重要手段。中职教学里的用语、概念、理论、计算技巧等许多知识,都是通过概括总结才被学生理解接受,并使学生举一反三、触类旁通的。所以在教学中,不但要向学生提供丰富的感性材料,启发学生积极开动脑筋,全方位多层次地思考,而且要重视对知识及学习过程进行概括总结,提高学生的概括总结能力。

7、激发学生兴趣。

(1)联系实际生活,创设情景教学。学习和实际生活联系起来,使学生更热爱学习,热爱生活。

(2)对比或类比教学。有些课程内部或课程之间有相似的方面,又有不同的方面。利用这种方法使学生能找到它们的不同点和相同点,又便于培养学生的总结归纳能力、发散思维能力等。

中职数学教学目标设计(精选篇2)

近年来,中职学校数学教学难,学生基础差,一些教学观念的落后陈旧,内容的不灵活,为保证教学顺利进行,提高学生的学习能力,应使用一些切实可行的计划。

学生情况分析:

职业学校学生对自己学习数学的信心不足,积极主动性不够,而所学的数学基础知识薄弱,基本概念模糊不清,基本方法掌握不够扎实,缺乏对基础的理解和研究,没有注重对所学知识和方法进行及时的复习与巩固,进而遗忘很快;灵活运用知识分析问题,解决问题能力差,只会模仿,不会举一反三,有点变化的题目就会变得束手无策。

教学目的:

1、获得必要的数学基础知识和基本技能,,理解数学基本概念、数学理论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及他们在后续学习中的作用。通过不同形式的自主、探究活动,体验数学发现和创造的过程。

2、提高对数学提出、分析和解决问题的能力,发展独立获取数学知识的能力。

3、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

教学目标:

1、理解整式、分式、数的乘方和开方的概念;中我他们的性质和运算法则。

2、掌握一元二次方程的解法,能解简单的二元一次方程组、二元二次方程组;能灵活的运用一元二次方程根的判别式以及根与系数的关系解决相关问题。

3、理解分数指数幂的概念,掌握有理指数幂的运算性质。

4、了解集合、元素、子集的概念:了解区间的概念,能够利用区间的形式表示简单的数集。

教学分析:

1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,创设能体现数学概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。

2、在教学中强调类比,推广,特殊化等数学思想方法,尽可能培养其逻辑思维的习惯

教学措施:

1、抓好课堂教学,提高教学效益。课堂教学是教学的主要环节,因此,抓号课堂教学是教学之根本,是提高数学成绩的主要途径。

2、加强课外辅导,提高竞争能力。课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

3、搞好单元测试,对阶段性的考试进行分析。

中职数学教学目标设计(精选篇3)

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

四、教学目标

1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3.借助多媒体辅助教学,激发学习数学的兴趣.

五、教学重点与难点:

教学重点

1.对圆锥曲线定义的理解

2.利用圆锥曲线的定义求“最值”

3.“定义法”求轨迹方程

教学难点:

巧用圆锥曲线定义解题

六、教学过程设计

【设计思路】

(一)开门见山,提出问题

一上课,我就直截了当地给出——

例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。

(A)椭圆 (B)双曲线 (C)线段 (D)不存在

(2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。

(A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线

【设计意图】

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

【学情预设】

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2

5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5

入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。

(二)理解定义、解决问题

例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求△ABC面积的最大值。

(2)在(1)的条件下,给定点P(-2,2), 求|PA|

【设计意图】

运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

【学情预设】

根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

(三)自主探究、深化认识

如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会——

练习:设点Q是圆C:(x1)2225|AB|的最小值。 3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

引申:若将点A移到圆C外,点M的轨迹会是什么?

【设计意图】 练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

可借助“多媒体课件”,引导学生对自己的结论进行验证。

【知识链接】

(一)圆锥曲线的定义

1. 圆锥曲线的第一定义

2. 圆锥曲线的统一定义

(二)圆锥曲线定义的应用举例

1.双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

2.|PF1||PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

(3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

5.已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

七、教学反思

1.本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

中职数学教学目标设计(精选篇4)

新学期已到来,我们又要投入到紧张、繁忙而有序地教育教学工作中,使自己今后的教学工作中能有效地、有序地贯彻新的教育精神,围绕我校新学期的工作计划要求制定八年级第二学期数学教学设计模板:

一、指导思想:

以学校工作计划为指导,严格执行学校的各项教育、教学制度和要求,认真完成各项任务,提高教学质量,提高课堂效率,数学教研提倡严谨、科学、务实,以《初中数学新课程标准》为依据,全面推进素质教育。

二、教材目标及要求:

1、 因式分解的重点是因式分解的四种基本方法,难点是灵活应用这四种方法。

2、 分式的重点是分式的四则运算,难点是分式四则混算、解分式方程以及列分式方程解应用题。

3、 数的开方的重点是平方根、算术平方根的要领及求法,难点是算术根与实数的概念。

4、 二次根式的重点是二次根式 的化简与计算,难点是正确理解和运用公式

5、 三角形的重点是三角形的性质,全等三角形的性质与判定,难点是推理入门。

6、 四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。

7、 相似形的重点是相似三角形的判定定理和性质定理及平行线段之间比的相等关系。

三、教学措施:

1、加强教学技能, 面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生,对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。

2、主动理性学习洋思教学经验,打造高效课堂。

3、改革作业结构减轻学生负担。将学生按学习能力分成几个层次,使每类学生都能在原有基础上提高。

4、 课后辅导实行动态分层,及时辅导。

四、教学进度安排:

第一章《一元一次不等式和一元一次不等式组》 约13课时 2.233.8

第二章《分解因式》 约6课时 3.9----3.16

第三章《分式》分式 约10课时 3.17---3.30

第四章《相似图形》 期中考试 约20课时 3.31---5.12

第五章《数据的收集与处理》 约7课时 5.12---5.26

第六章《证明一》你能肯定吗 约9课时 5.26---6.15.

期末复习 约9课时 6.16---7月

中职数学教学目标设计(精选篇5)

一、单元教学内容

(1)算法的基本概念

(2)算法的基本结构:顺序、条件、循环结构

(3)算法的基本语句:输入、输出、赋值、条件、循环语句

二、单元教学内容分析

算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

三、单元教学课时安排:

1、算法的基本概念3课时

2、程序框图与算法的基本结构5课时

3、算法的基本语句2课时

四、单元教学目标分析

1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

五、单元教学重点与难点分析

1、重点

(1)理解算法的含义

(2)掌握算法的基本结构

(3)会用算法语句解决简单的实际问题

2、难点

(1)程序框图

(2)变量与赋值

(3)循环结构

(4)算法设计

六、单元总体教学方法

本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

七、单元展开方式与特点

1、展开方式

自然语言→程序框图→算法语句

2、特点

(1)螺旋上升分层递进

(2)整合渗透前呼后应

(3)三线合一横向贯通

(4)弹性处理多样选择

八、单元教学过程分析

1.、算法基本概念教学过程分析

对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

2、算法的流程图教学过程分析

对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

3.、基本算法语句教学过程分析

经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,

4.、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

九、单元评价设想

1、重视对学生数学学习过程的评价

关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

2、正确评价学生的数学基础知识和基本技能

关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

5558