高一物理课程教学设计
通过说课稿,教师可以更好地规划教学内容和方法,明确教学目的和难点,从而更有效地进行课前准备,提高教学效率。优秀的高一物理课程教学设计应该是怎样的?快来学习高一物理课程教学设计的撰写技巧,跟着小编一起来参考!
高一物理课程教学设计精选篇1
一、教学目标
1、知识与技能目标
(1)知道什么是弹力,弹力产生的条件 (2)能正确使用弹簧测力计 (3)知道形变越大,弹力越大
2、过程和方法目标
(1)通过观察和实验了解弹簧测力计的结构
(2)通过自制弹簧测力计以及弹簧测力计的使用,掌握弹簧测力计的使用方法
3、情感、态度与价值目标
通过弹簧测力计的制作和使用,培养严谨的科学态度和爱动手动脑的好习惯
二、重点难点
重点:什么是弹力,正确使用弹簧测力计。
难点:弹簧测力计的测量原理。
三、教学方法:探究实验法,对比法。
四、教学仪器:直尺,橡皮筋,橡皮泥,纸,弹簧测力计
五、教学过程
(一)弹力
1、弹性和塑性
学生实验,注意观察所发生的现象:
(1)将一把直尺的两端分别靠在书上,轻压使它发生形变,体验手感,撤去压力,直尺恢复原状;
(2)取一条橡皮筋,把橡皮筋拉长,体验手感,松手后,橡皮筋会恢复原来的长度。
(3)取一块橡皮泥,用手捏,使其变形,手放开,橡皮泥保持变形后的形状。
(4)取一张纸,将纸揉成一团再展开,纸不会恢复原来形状。
让学生交流实验观察到的现象上,并对这些实验现象进行分类,说明按什么分类,并要求各类再举些类似的例子。(按物体受力变形后能否恢复原来的形状这一特性进行分类)
直尺、橡皮筋等受力会发生形变,不受力时又恢复到原来的形状,物体的这种特性叫做弹性;橡皮泥、纸等变形后不能自动恢复原来的形状,物体的这种特性叫做塑性。
2、弹力
我们在压尺子、拉橡皮筋时,感受到它们对于有力的作用,这种力在物理学上叫做弹力。
弹力是物体由于弹性形变而产生的力。弹力也是一种很常见的力。并且任何物体只要发生弹性形变就一定会产生弹力。而日常生活中经常遇到的支持物的压力、绳的拉力等,实质上都是弹力。
3、弹性限度
弹簧的弹性有一定的限度,超过了这个限度就不完全复原了。使用弹簧时不能超过它弹性限度,否则会使弹簧损坏。
(二)弹簧测力计
1、测量原理
它是根据弹簧受到的拉力越大,它的伸长就越长这个道理制作的。
2、让学生自己归纳使用弹簧测力计的方法和注意事项。
使用测力计应该注意下面几点:
(1)所测的力不能大于测力计的测量限度,以免损坏测力计
(2)使用前,如果测力计的指针没有指在零点,那么应该调节指针的位置使其指在零点
(3)明确分度值:了解弹簧测力计的刻度每一大格表示多少N,每一小格表示多少N
(4)把挂钩轻轻拉动几下,看看是否灵活。
5、探究:弹簧测力计的制作和使用。
(四)课堂小结:1、什么是弹性?什么是塑性?什么是弹力?
2、弹簧测力计的测量原理
3、弹簧测力计的使用方法。
(五)巩固练习:
1、乒乓球掉在地上马上会弹起来,使乒乓球自下而上运动的力是 ,它是由于乒乓球发生了 而产生的。
2、弹簧受到的拉力越大,弹簧的伸长就 。它有一个前提条件,该条件是 , 就是根据这个道理制作的。
3、关于弹力的叙述中正确的是( )
A、只有弹簧、橡皮筋等这类物体才可能产生弹力
B、只要物体发生形变就会产生弹力
C、任何物体的弹性都有一定的限度,因而弹力不可能无限大
D、弹力的大小只与物体形变的程度有关
4、下列哪个力不属于弹力( )
A、绳子对重物的拉力 B、万有引力 C、地面对人的支持力 D、人对墙的推力
5、两个同学同时用4.2N的力,向两边拉弹簧测力计的挂钩和提纽,此时弹簧测力计显示的示数是 。
(六)布置作业:
六、课后反思:
1、成功的地方:
2、不足的地方:
3、改进措施:
附:板书设计:
一、弹力:
1、弹性和塑性
2、弹力:物体由于发生弹性形变而产生的力。
3、弹性限度
二、弹簧测力计:
1、测量原理:弹簧受到的拉力越大,弹簧的伸长就越长。
2、使用方法:(1)认清量程、分度值
(2)检查指针是否指在零点
高一物理课程教学设计精选篇2
万有引力与航天
(一)知识网络
托勒密:地心说
人类对行 哥白尼:日心说
星运动规 开普勒 第一定律(轨道定律)
行星 第二定律(面积定律)
律的认识 第三定律(周期定律)
运动定律
万有引力定律的发现
万有引力定律的内容
万有引力定律 F=G
引力常数的测定
万有引力定律 称量地球质量M=
万有引力 的理论成就 M=
与航天 计算天体质量 r=R,M=
M=
人造地球卫星 M=
宇宙航行 G = m
mr
ma
第一宇宙速度7.9km/s
三个宇宙速度 第二宇宙速度11.2km/s
地三宇宙速度16.7km/s
宇宙航行的成就
(二)、重点内容讲解
计算重力加速度
1 在地球表面附近的重力加速度,在忽略地球自转的情况下,可用万有引力定律来计算。
G=G =6.67_ _ =9.8(m/ )=9.8N/kg
即在地球表面附近,物体的重力加速度g=9.8m/ 。这一结果表明,在重力作用下,物体加速度大小与物体质量无关。
2 即算地球上空距地面h处的重力加速度g’。有万有引力定律可得:
g’= 又g= ,∴ = ,∴g’= g
3 计算任意天体表面的重力加速度g’。有万有引力定律得:
g’= (M’为星球质量,R’卫星球的半径),又g= ,
∴ = 。
星体运行的基本公式
在宇宙空间,行星和卫星运行所需的向心力,均来自于中心天体的万有引力。因此万有引力即为行星或卫星作圆周运动的向心力。因此可的以下几个基本公式。
1 向心力的六个基本公式,设中心天体的质量为M,行星(或卫星)的圆轨道半径为r,则向心力可以表示为: =G =ma=m =mr =mr =mr =m v。
2 五个比例关系。利用上述计算关系,可以导出与r相应的比例关系。
向心力: =G ,F∝ ;
向心加速度:a=G , a∝ ;
线速度:v= ,v∝ ;
角速度: = , ∝ ;
周期:T=2 ,T∝ 。
3 v与 的关系。在r一定时,v=r ,v∝ ;在r变化时,如卫星绕一螺旋轨道远离或靠近中心天体时,r不断变化,v、 也随之变化。根据,v∝ 和 ∝ ,这时v与 为非线性关系,而不是正比关系。
一个重要物理常量的意义
根据万有引力定律和牛顿第二定律可得:G =mr ∴ .这实际上是开普勒第三定律。它表明 是一个与行星无关的物理量,它仅仅取决于中心天体的质量。在实际做题时,它具有重要的物理意义和广泛的应用。它同样适用于人造卫星的运动,在处理人造卫星问题时,只要围绕同一星球运转的卫星,均可使用该公式。
估算中心天体的质量和密度
1 中心天体的质量,根据万有引力定律和向心力表达式可得:G =mr ,∴M=
2 中心天体的密度
方法一:中心天体的密度表达式ρ= ,V= (R为中心天体的半径),根据前面M的表达式可得:ρ= 。当r=R即行星或卫星沿中心天体表面运行时,ρ= 。此时表面只要用一个计时工具,测出行星或卫星绕中心天体表面附近运行一周的时间,周期T,就可简捷的估算出中心天体的平均密度。
方法二:由g= ,M= 进行估算,ρ= ,∴ρ=
(三)常考模型规律示例总结
1. 对万有引力定律的理解
(1)万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。
(2)公式表示:F= 。
(3)引力常量G:①适用于任何两物体。
②意义:它在数值上等于两个质量都是1kg的物体(可看成质点)相距1m时的相互作用力。
③G的通常取值为G=6。67×10-11Nm2/kg2。是英国物理学家卡文迪许用实验测得。
(4)适用条件:①万有引力定律只适用于质点间引力大小的计算。当两物体间的距离远大于每个物体的尺寸时,物体可看成质点,直接使用万有引力定律计算。
②当两物体是质量均匀分布的球体时,它们间的引力也可以直接用公式计算,但式中的r是指两球心间的距离。
③当所研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出两个物体上每个质点与另一物体上所有质点的万有引力,然后求合力。(此方法仅给学生提供一种思路)
(5)万有引力具有以下三个特性:
①普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,它是自然界的物体间的基本相互作用之一。
②相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。
③宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的存在才有宏观的物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略不计。
〖例1〗设地球的质量为M,地球的半径为R,物体的质量为m,关于物体与地球间的万有引力的说法,正确的是:
A、地球对物体的引力大于物体对地球的引力。
物体距地面的高度为h时,物体与地球间的万有引力为F= 。
物体放在地心处,因r=0,所受引力无穷大。
D、物体离地面的高度为R时,则引力为F=
〖答案〗D
〖总结〗(1)矫揉造作配地球之间的吸引是相互的,由牛顿第三定律,物体对地球与地球对物体的引力大小相等。
(2)F= 。中的r是两相互作用的物体质心间的距离,不能误认为是两物体表面间的距离。
(3)F= 适用于两个质点间的相互作用,如果把物体放在地心处,显然地球已不能看为质点,故选项C的推理是错误的。
〖变式训练1〗对于万有引力定律的数学表达式F= ,下列说法正确的是:
A、公式中G为引力常数,是人为规定的。
B、r趋近于零时,万有引力趋于无穷大。
C、m1、m2之间的引力总是大小相等,与m1、m2的质量是否相等无关。
D、m1、m2之间的万有引力总是大小相等,方向相反,是一对平衡力。
〖答案〗C
2. 计算中心天体的质量
解决天体运动问题,通常把一个天体绕另一个天体的运动看作匀速圆周运动,处在圆心的天体称作中心天体,绕中心天体运动的天体称作运动天体,运动天体做匀速圆周运动所需的向心力由中心天体对运动天体的万有引力来提供。
式中M为中心天体的质量,Sm为运动天体的质量,a为运动天体的向心加速度,ω为运动天体的角速度,T为运动天体的周期,r为运动天体的轨道半径.
(1)天体质量的估算
通过测量天体或卫星运行的周期T及轨道半径r,把天体或卫星的运动看作匀速圆周运动.根据万有引力提供向心力,有 ,得
注意:用万有引力定律计算求得的质量M是位于圆心的天体质量(一般是质量相对较大的天体),而不是绕它做圆周运动的行星或卫星的m,二者不能混淆.
用上述方法求得了天体的质量M后,如果知道天体的半径R,利用天体的体积 ,进而还可求得天体的密度. 如果卫星在天体表面运行,则r=R,则上式可简化为
规律总结:
掌握测天体质量的原理,行星(或卫星)绕天体做匀速圆周运动的向心力是由万有引力来提供的.
物体在天体表面受到的重力也等于万有引力.
注意挖掘题中的隐含条件:飞船靠近星球表面运行,运行半径等于星球半径.
(2)行星运行的速度、周期随轨道半径的变化规律
研究行星(或卫星)运动的一般方法为:把行星(或卫星)运动当做匀速圆周运动,向心力来源于万有引力,即:
根据问题的实际情况选用恰当的公式进行计算,必要时还须考虑物体在天体表面所受的万有引力等于重力,即
(3)利用万有引力定律发现海王星和冥王星
〖例2〗已知月球绕地球运动周期T和轨道半径r,地球半径为R求(1)地球的质量?(2)地球的平均密度?
〖思路分析〗
设月球质量为m,月球绕地球做匀速圆周运动,
则: ,
(2)地球平均密度为
答案: ;
总结:①已知运动天体周期T和轨道半径r,利用万有引力定律求中心天体的质量。
②求中心天体的密度时,求体积应用中心天体的半径R来计算。
〖变式训练2〗人类发射的空间探测器进入某行星的引力范围后,绕该行星做匀速圆周运动,已知该行星的半径为R,探测器运行轨道在其表面上空高为h处,运行周期为T。
(1)该行星的质量和平均密度?(2)探测器靠近行星表面飞行时,测得运行周期为T1,则行星平均密度为多少?
答案:(1) ; (2)
3. 地球的同步卫星(通讯卫星)
同步卫星:相对地球静止,跟地球自转同步的卫星叫做同步卫星,周期T=24h,同步卫星又叫做通讯卫星。
同步卫星必定点于赤道正上方,且离地高度h,运行速率v是确定的。
设地球质量为 ,地球的半径为 ,卫星的质量为 ,根据牛顿第二定律
设地球表面的重力加速度 ,则
以上两式联立解得:
同步卫星距离地面的高度为
同步卫星的运行方向与地球自转方向相同
注意:赤道上随地球做圆周运动的物体与绕地球表面做圆周运动的卫星的区别
在有的问题中,涉及到地球表面赤道上的物体和地球卫星的比较,地球赤道上的物体随地球自转做圆周运动的圆心与近地卫星的圆心都在地心,而且两者做匀速圆周运动的半径均可看作为地球的R,因此,有些同学就把两者混为一谈,实际上两者有着非常显著的区别。
地球上的物体随地球自转做匀速圆周运动所需的向心力由万有引力提供,但由于地球自转角速度不大,万有引力并没有全部充当向心力,向心力只占万有引力的一小部分,万有引力的另一分力是我们通常所说的物体所受的重力(请同学们思考:若地球自转角速度逐渐变大,将会出现什么现象?)而围绕地球表面做匀速圆周运动的卫星,万有引力全部充当向心力。
赤道上的物体随地球自转做匀速圆周运动时由于与地球保持相对静止,因此它做圆周运动的周期应与地球自转的周期相同,即24小时,其向心加速度
;而绕地球表面运行的近地卫星,其线速度即我们所说的第一宇宙速度,
它的周期可以由下式求出:
求得 ,代入地球的半径R与质量,可求出地球近地卫星绕地球的运行周期T约为84min,此值远小于地球自转周期,而向心加速度 远大于自转时向心加速度。
已知地球的半径为R=6400km,地球表面附近的重力加速度 ,若发射一颗地球的同步卫星,使它在赤道上空运转,其高度和速度应为多大?
:设同步卫星的质量为m,离地面的高度的高度为h,速度为v,周期为T,地球的质量为M。同步卫星的周期等于地球自转的周期。
①
②
由①②两式得
又因为 ③
由①③两式得
:
:此题利用在地面上 和在轨道上 两式联立解题。
下面关于同步卫星的说法正确的是( )
A .同步卫星和地球自转同步,卫星的高度和速率都被确定
B .同步卫星的角速度虽然已被确定,但高度和速率可以选择,高度增加,速率增大;高度降低,速率减小
C .我国发射的第一颗人造地球卫星的周期是114分钟,比同步卫星的周期短,所以第一颗人造地球卫星离地面的高度比同步卫星低
D .同步卫星的速率比我国发射的第一颗人造卫星的速率小
:ACD
高一物理课程教学设计精选篇3
教学目标:
一、知识目标
1、理解速度的概念。知道速度是表示运动快慢的物理量,知道它的定义、公式、符号和单位,知道它是矢量。
2、理解平均速度,知道瞬时速度的概念。
3、知道速度和速率以及它们的区别。
二、能力目标
1、比值定义法是物理学中经常采用的方法,学生在学生过程中掌握用数学工具描述物理量之间的关系的方法。
2、培养学生的迁移类推能力,抽象思维能力。
三、德育目标
由简单的问题逐步把思维迁移到复杂方向,培养学生认识事物的规律,由简单到复杂。
教学重点
平均速度与瞬时速度的概念及其区别
教学难点
怎样由平均速度引出瞬时速度
教学方法
类比推理法
教学用具
有关数学知识的投影片
课时安排
1课时
教学步骤
一、导入新课
质点的各式各样的运动,快慢程度不一样,那如何比较运动的快慢呢?
二、新课教学
(一)用投影片出示本节课的学习目标:
1、知道速度是描述运动快慢和方向的物理量。
2、理解平均速度的概念,知道平均不是速度的平均值。
3、知道瞬时速度是描述运动物体在某一时刻(或经过某一位置时)的速度,知道瞬时速度的大小等于同一时刻的瞬时速率。
(二)学生目标完成过程
1、速度
提问:运动会上,比较哪位运动员跑的快,用什么方法?
学生:同样长短的位移,看谁用的时间少。
提问:如果运动的时间相等,又如何比较快慢呢?
学生:那比较谁通过的位移大。
老师:那运动物体所走的位移,所用的时间都不一样,又如何比较其快慢呢?
学生:单位时间内的位移来比较,就找到了比较的统一标准。
师:对,这就是用来表示快慢的物理量——速度,在初中时同学就接触过这个概念,那同学回忆一下,比较一下有哪些地方有了侧重,有所加深。
板书:速度是表示运动的快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。用v=s/t表示。
由速度的定义式中可看出,v的单位由位移和时间共同决定,国际单位制中是米每秒,符号为m/s或m·s—1,常用单位还有km/h、cm/s等,而且速度是既具有大小,又有方向的物理量,即矢量。
板书:
速度的方向就是物体运动的方向。
2、平均速度
在匀速直线运动中,在任何相等的时间里位移都是相等的,那v=s/t是恒定的。那么如果是变速直线运动,在相等的时间里位移不相等,那又如何白色物体运动的快慢呢?那么就用在某段位移的平均快慢即平均速度来表示。
例:百米运动员,10s时间里跑完100m,那么他1s平均跑多少呢?
学生马上会回答:每秒平均跑10m。
师:对,这就是运动员完成这100m的平均快慢速度。
板书:
说明:对于百米运动员,谁也说不来他在哪1秒破了10米,有的1秒钟跑10米多,有的1秒钟跑不到10米,但它等效于运动员自始至终用10m/s的速度匀速跑完全程。所以就用这平均速度来粗略表示其快慢程度。但这个 =10m/s只代表这100米内(或10秒内)的平均速度,而不代表他前50米的平均速度,也不表示后50米或其他某段的平均速度。
例:一辆自行车在第一个5秒内的位移为10米,第二个5秒内的位移为15米,第三个5秒内的位移为12米,请分别求出它在每个5秒内的平均速度以及这15秒内的平均速度。
学生计算得出:
由此更应该知道平均速度应指明是哪段时间内的平均速度。
3、瞬时速度
如果要精确地描述变速直线运动的快慢,应怎样描述呢?那就必须知道某一时刻(或经过某一位置)时运动的快慢程度,这就是瞬时速度。
板书:瞬时速度:运动的物体在(经过)某一时刻(或某一位置)的速度。
比如:骑摩托车时或驾驶汽车时的速度表显示,若认为以某一速度开始做匀速运动,也就是它前一段到达此时的瞬时速度。
在直线运动中,瞬时速度的方向即物体在这一位置的运动方向,所以瞬时速度是矢量。通常我们只强调其大小,把瞬时速度的大小叫瞬时速率,简称为速率,是标量。
4、巩固训练:(出示投影片)
一物体从甲地到乙地,总位移为2s,前一s内平均速度为v1,第二s内平均开速度为v2,求这个物体在从甲地到乙地的平均速度 。
师生共评:有的同学答案为 这是错误的。平均速度不是速度的平均值,要严格按照平均速度的定义来求,用这段总位移与这段位移所用的时间的比值,也就只表示这段位移内的平均速度。
三、小结
1、速度的概念及物理意义;
2、平均速度的概念及物理意义;
3、瞬时速度的概念及物理意义;
4、速度的大小称为速率。
拓展:
本节课后有阅读材料,怎样理解瞬时速度,同学们有兴趣的话,请看一下,这里运用了数学的“极限”思想,有助于你对瞬时速度的理解。
四、作业P26练习三3、4、5
五、板书设计
高一物理课程教学设计精选篇4
【学习目标】
1. 会用描点法作出 v-t 图象。
2.能从 v-t 图象分析出匀变速直线运动的速度随时间的变化规律。
【学习难点】
1.各点瞬时速度的计算.
2.对实验数据的处理、规律的探究.
【自主学习】 (A级)
一.实验目的 探究小车速度随 变化的规律。
二.实验原理 利用 打出的纸带上记录的数据,以寻找小车速度随时间变化的规律。
三.实验器材 打点计时器、低压 电源、纸带、带滑轮的长木板、小车、 、细线、复写纸片、 。
四.实验步骤
1.如课本34页图所示,把附有滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路。
2.把一条细线拴在小车上,使细线跨过滑轮,下边挂上合适的 。把纸带穿过打点计时器,并把纸带的一端固定在小车的后面。
3.把小车停在靠近打点计时器处,接通 后,放开 ,让小车拖着纸带运动,打点计时器就在纸带上打下一行小点,随后立即关闭电源。换上新纸带,重复实验三次。
4.从三条纸带中选择一条比较理想的,舍掉开头比较密集的点迹,在后边便于测量的地方找一个点做计时起点。为了测量方便和减少误差,通常不用每打一次点的时间作为时间的单位,而用每打五次点的时间作为时间的单位,就是T=0.02 s ×5=0.1 s 。在选好的计时起点下面表明A,在第6点下面表明B,在第11点下面表明C……,点A、B、C……叫做计数点,两个相邻计数点间的距离分别是x1、x2、x3……
5.利用第一章方法得出各计数点的瞬时速度填入下表:
位置 A B C D E F G
时间(s) 0 0.1 0.2 0.3 0.4 0.5 0.6
v(m/s)
6.以速度v为 轴,时间t为 轴建立直角坐标系,根据表中的数据,在直角坐标系中描点。
7.通过观察思考,找出这些点的分布规律。
五.注意事项
1.开始释放小车时,应使小车靠近打点计时器。
2.先接通电源,计时器工作后,再放开小车,当小车停止运动时及时断开电源。
3.要防止钩码落地和小车跟滑轮相撞,当小车到达滑轮前及时用手按住它。
4.牵引小车的钩码个数要适当。
5.加速度的大小以能在60cm长的纸带上清楚地取得六七个计数点为宜。
6.要区别计时器打出的点和人为选取的计数点。一般在纸带上每5个点取一个计数点,间隔为0.1 s 。
2-1实验:探究小车速度随时间变化的规律(探究案)
实验纸带
1.
2.
3.
数据处理(完成表格)
小车在几个时刻的瞬时速度
位置编号 0 1 2 3 4 5 6 7 8
t/s 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
V1(m/s)
V2(m/s)
V3(m/s)
做出速度-时间图像
学习反思:
2-1实验:探究小车速度随时间变化的规律(训练案)
1.在探究小车速度随时间变化的规律的实验中,按照实验进行的先后顺序,将下述步骤地代号填在横线上 。
A.把穿过打点计时器的纸带固定在小车后面
B.把打点计时器固定在木板的没有滑轮的一端,并连好电路
C.换上新的纸带,再重做两次
D.把长木板平放在实验桌上,并使滑轮伸出桌面
E.使小车停在靠近打点计时器处,接通电源,放开小车,让小车运动
F.把一条细线拴在小车上,细线跨过定滑轮,下边吊着合适的钩码
G.断开电源,取出纸带
2.在下列给出的器材中,选出“探究小车速度随时间变化的规律”的实验中所需的器材并填在横线上(填序号)。
①打点计时器 ②天平 ③低压交流电源 ④低压直流电源 ⑤细线和纸带 ⑥钩码和小车 ⑦秒表 ⑧一端有滑轮的长木板 ⑨刻度尺
选出的器材是
3.为了计算加速度,最合理的方法是( )
A. 根据任意两计数点的速度用公式○算出加速度
B.根据实验数据画出v-t图,量出其倾角,由公式a=tana求出加速度
C.根据实验数据画出v-t图,由图线上相距较远的两点所对应的速度、时间,用公式
a=△v/△t算出加速度
D.依次算出通过连续两计数点间的加速度,算出平均值作为小车的加速度
4.汽车沿平直的公路行驶,小明坐在汽车驾驶员旁,注视着速度计,并记下间隔相等的各时刻的速度值,如下表所示.
从表中数据得到汽车在各段时间内的运动特点:在o~15 s内,汽车的速度在变化,每5s速度增大______km/h;在15~30 s内汽车速度不变,速度大小为_______km/h;在35~45s内汽车速度在变化,每5 s速度减小_________km/h.
5.某同学在“探究小车速度随时间变化的规律”的实验中,算出小车经过各计数点的瞬时速度如表格中所示:
计数点序号 1 2 3 4 5 6
计数点对应时刻(s) 0.1 0.2 0.3 0.4 0.5 0.6
通过计数点的速度(m/s) 44.0 62.0 81.0 100.0 110.0 138.0
请作出小车的v-t图象,并分析运动特点。
6.在“探究小车速度随时间变化的规律”的实验中,如图给出了从0点开始,每5个点取一个计数点的纸带,其中0、1、2、3、4、5、6都为计数点。测得:s1=1.40 cm,s2=1.90 cm,s3=2.38 cm, s4= 2.88 cm,s5=3.39 cm,s6=3.87 cm。那么:
(1)在计时器打出点1、2、3、4、5时,小车的速度分别为:v1= cm/s ,v2= cm/s ,v3= cm/s ,v4= cm/s ,v5= cm/s 。
(2)在平面直角坐标系中作出速度—时间图象。
(3)分析小车运动速度随时间变化的规律。
高一物理课程教学设计精选篇5
一、 教材分析
在上一节实验的基础上,分析v-t图像时一条倾斜直线的意义——加速度不变,由此定义了匀变速直线运动。而后利用描述匀变速直线运动的v-t图像的是倾斜直线,进一步分析匀变速直线运动的速度与时间的关系:无论时间间隔∆t大小, 的值都不变,由此导出v = v0 + at,最后通过例题以加深理解,并用“说一说”使学生进一步加深对物体做变速运动的理解。
二、 教学目标
1、知道匀速直线运动 图象。
2、知道匀变速直线运动的 图象,概念和特点。
3、掌握匀变速直线运动的速度与时间关系的公式v = v0 + at,并会进行计算。
教学重点
1、 匀变速直线运动的 图象,概念和特点。
2、 匀变速直线运动的速度与时间关系的公式v = v0 + at,并进行计算。
三、 教学难点
会用 图象推导出匀变速直线运动的速度与时间关系的公式v = v0 + at。
四、 教学过程
预习检查:加速度的概念,及表达式 a=
导入新课:
上节课,同学们通过实验研究了速度与时间的关系,小车运动的υ-t图象。
设问:小车运动的 υ-t图象是怎样的图线?(让学生画一下)
学生坐标轴画反的要更正,并强调调,纵坐标取速度,横坐标取时间。
υ-t图象是一条直线,速度和时间的这种关系称为线性关系。
设问:在小车运动的υ-t图象上的一个点P(t1,v1)表示什么?
学生画出小车运动的υ-t图象,并能表达出小车运动的υ-t图象是一条倾斜的直线。
学生回答:t1时刻,小车的速度为v1 。
学生回答不准确,教师补充、修正。
预习检查
情境导入
精讲点拨:
1、匀速直线运动图像
向学生展示一个υ-t图象:
提问:这个υ-t图象有什么特点?它表示物体运动的速度有什么特点?物体运动的加速度又有什么特点?
在各小组陈述的基础上教师请一位同学总结。
2、匀变速直线运动图像
提问:在上节的实验中,小车在重物牵引下运动的v-t图象是一条倾斜的直线,物体的加速度有什么特点?直线的倾斜程度与加速度有什么关系?它表示小车在做什么样的运动?
从图可以看出,由于v-t图象是一 条倾斜的直线,速度随着时间逐渐变大,在时间轴上取取两点t1,t2,则t1,t2间的距离表示时间间隔∆t= t2—t1,t1时刻的速度为 v1, t2 时刻的速度为v2,则v2—v1= ∆v,∆v即为间间隔∆t内的速度的变化量。
提问:∆v与∆t是什么关系?
知识总结:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。匀变速直线运动的v-t图象是一条倾斜的直线。
提问:匀变速直线运动的v-t图线的斜率表示什么?匀变速直线运动的v-t图线与纵坐标的交点表示什么?
展示以下两个v-t图象,请同学们观察,并比较这两个v-t图象。
知识总结:在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运 动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
分小组讨论
每一小组由一位同学陈述小组讨论的结 果。
学生回答:是一条平行于时间轴的直线。表示物体的速度不随时间变化,即物体作匀速直线运动。作匀速直线运动的物体,∆v = 0, = 0,所以加速度为零。
分小组讨论
每一小组由一位同学陈述小组讨论的结果。
由于v-t图象是一条直线,无论∆t选在什么区间,对应 的速度v的变化量∆v与时间t的变化量∆t之比 都是一样的, 表示速度 的变化量与所用时间的比值,即加速度。所以v-t图象是一条倾斜的直线的运动,是加速度不变的运动。
学生回答:v-t图线的斜率在数值上等于速度v的变化量∆v与时间t的变化量∆t之比,表示速度的变化量与所用时间的比值,即加速度。
v-t图线与纵坐标的交点表示t = 0 时刻的速度,即初速度v0。
学生回答:甲乙两个v-t图象表示的运动都是匀变速直线运动,但甲图的速度随时间均匀增加,乙图的速度随着时间均匀减小。
让学生通过自身的观察,发现匀加速直线运动与匀减速直线运动 的不同之处,能帮助学生正确理解匀变速直线运动。
3、匀变速直线速度与时间的关系式
提问:除用图象表示物体运动的速度与时间的关系外,是否还可以用公式表达物体运动的速度与时间的关系?
教师引导,取t=0时为初状态,速度为初速度V0,取t时刻为末状态,速度为末速度V,从初态到末态,时间的变化量为∆t,则∆t = t—0,速度的变化量为∆V,则∆V = V—V0
提问:能否直接从图线结合数学知识得到速度与时间的关系式?
知识总结:匀变速直线 运动中,速度与时间的关系式是V= V0 + a t
匀变速直线运动的速度与时间关系的公式:V= V0 + a t可以这样理解:由于加速度a在数值上等于单位时间内速度的变化量,所以at就是整个运动过程中速度的变化量;再加上运动开始时物体的速度V0,就得到t时刻物体的速度V。
4、例题
例题1、汽车以40 km/h的速度匀速行驶,现以0.6 m/s2的加速度加速,10s后速度能达到多少?加速后经过多长汽车的速度达到80 km/h?
例题2、某汽车在某路面紧急刹车时,加速度的大小是6 m/s2,如果必须在2s内停下来,汽车的行驶速度不能超过多少?如果汽车以允许速度行驶,必须在1.5s内停下来, 汽车刹车匀减速运动加速度至少多大?
分析:我们研究的是汽车从开始刹车到停止运动这个过程。在这个过程中,汽车做匀减速运动,加速度的大小是6 m/s2。由于是减速运动,加速度的方向与速度方向相反,如果设汽车运动的方向为正,则汽车的加速度方向为负,我们把它记为a = 一6 m/s2。这个过程的t时刻末速度V是0,初速度就是我们所求的允许速度,记为V0,它是这题所求的“速度”。过程的持续时间为t=2s
学生回答:因为加速度
a = ,所以∆V =a ∆t
V—V0= a ∆t
V—V0= a t
V= V0 + a t
学生回答:因为匀变速直线运动的v-t图象是一条倾斜的直线,所以v与t是线性关系,或者说v是t的一次函数,应符合y = k x + b 的形式。其中是图线的斜率,在数值上等于匀变速直线运动的加速度a,b是纵轴上的截距,在数值上等于匀变速直线运动的初速度V0,所以V= V0 + a t
同学们思考3-5分钟,
让一位同学说说自己的思路。其他同学纠正,补充。
让同学计算。
展示某同学的解题,让其他同学点评。
解:初速度V0= 40 km/h = 11 m/s,加速度a = 0.6 m/s2,时间t=10 s。
10s后的速度为V= V0 + a t
= 11 m/s + 0.6 m/s2×10s
= 17 m/s = 62 km/h
由V= V0 + a t得
同学们思考3-5分钟,
让一位同学说说自己的思路。其他同学纠正,补充。
让同学计算。
展示某同学的解题,让其他同学点评。
解:根据V= V0 + a t,有
V0 = V — a t
= 0 — (—6m/s2)×2s
= 43 km/h
汽车的速度不能超过43 km/h
根据V= V0 + a t,有
汽车刹车匀减速运动加速度至少9m/s2
注意同一方向上的矢量运算,要先规定正方向,然后确定各物理量的正负(凡与规定正方向的方向相同为正,凡与规定正方向的方向相反为负。)然后代入V-t的关系式运算。
五、 课堂小结
六、 利用V-t图 象得出匀速直线运动和匀变速直线运动的特点。
七、 并进一步利用V-t图推导出匀变速直线运动的速度和时间的关系式。
布置作业
(1)请学生课后探讨课本第3 9页,“说一说”
(2)请学生课后探讨课本第39页“问题与练习”中的1~4题。